

KULLIYYAH OF ENGINEERING

END OF SEMESTER EXAMINATION SEMESTER I, 2020/2021 SESSION

Programme	: Engineering	Level of Study	: UG 2
Time	: 2 :30 pm - 5:30 pm	Date	: 14/01/2021
Duration	: 3 Hrs		
Course Code	: EECE 2312	Section(s)	: 1-2
Course Title	: Electronic Circuits		

This Question Paper Consists of **5 (Five)** Printed Pages (Including Cover Page) with **4 (Four)** Questions.

INSTRUCTION(S) TO CANDIDATES

- Total mark of this examination is **80**.
- This examination is worth 60% of the total course assessment.
- Answer ALL QUESTIONS.
- Marks assigned to each problem are listed in the margins.
- Online exam
- Note that one of the conditions to pass the course is to obtain at least 50 % of this examination.

DECLARATION

By answering this final examination, I hereby declare that:

- The whole answer of this final examination is my own work.
- I do not receive any help from any other parties in answering on any part of this final examination.
- I do not give any clue, hint or work to other students in answering on any part of this final examination.
- I understand that any form of cheating or attempt to cheat is a serious offence, which may lead to dismissal.

Question 1 [20 marks]

(a) Derive the transfer function step by step for the *RC*-circuit shown in Fig. 1 (a) the following standard format:

$$T(s) = k \frac{1 + s\tau_1}{1 + s\tau_2}$$

where, τ_1 and τ_2 are the two different time constants, and k is a frequency independent constant. (7 marks)

Fig. 1(a)

(b) Determine the -3 dB lower corner, upper frequencies and bandwidth of the circuit as shown in Fig. 1(b). The circuit components are $R_1 = 2.5 \text{ k}\Omega$, $R_2 = 4.0 \text{ k}\Omega$, $C_1 = 150 \text{ pF}$ and $C_2 = 80 \text{ nF}$ respectively. (3 marks)

Fig. 1(b)

(c) Plot the Bode magnitude and phase for the following transfer function and determine the magnitude and phase at angular frequency 80 rad/sec.
(6+4 marks)

$$T(s) = \frac{1.25 \times 10^{-3} s(s+50)}{(s+20)(s+90)}$$

Question 2 [20 marks]

- (a) The common emitter amplifier is shown in Fig. 2(a) with the following circuit component values $R_S = 5 \text{ k}\Omega$, $C_{C1} = 0.1 \mu\text{F}$, $R_1 = 180 \text{ k}\Omega$, $R_2 = 85 \text{ k}\Omega$, $R_E = 0.5 \text{ k}\Omega$, $R_C = 3 \text{ k}\Omega$, and $R_L = 10 \text{ k}\Omega$. The BJT has AC small-signal hybrid- π parameters, $g_m = 50 \text{ mA/V}$, $r_{\pi} = 1.5 \text{ k}\Omega$ and $r_0 = \infty$. (14 marks)
 - *i*. Find the lower corner frequency due to C_{C1} .
 - *ii.* Design the amplifier circuit by considering the lower corner frequency is same due to C_{C1} and upper corner frequency, $f_H = 300$ kHz.
 - iii. What is the bandwidth of the amplifier?
 - *iv.* Determine the maximum gain of the designed amplifier in dB.
 - v. What is the amplifier gain if R_s is bypassed by a large capacitance?

(b) The common source amplifier is shown in Fig. 2(b). Assume that the MOSFET has small-signal high frequency parameters, $g_m = 2 \text{ mA/V}$, $r_o = 25 \text{ k}\Omega$, $C_{gs} = 20 \text{ pF}$ and $C_{ds} = 12 \text{ pF}$. Draw the Miller equivalent circuit and determine the Miller capacitance, C_M . (6 marks)

Fig. 2(b)

Question 3 [20 marks]

(a) Derive the expression for output current relation systematically of the BJT current source as shown in Fig. 3(a). Assume that all the transistors are identical. (6 marks)

Fig. 3(a)

- (b) Draw the small-signal equivalent circuit for the current source as shown in Fig. 3(a). (2 marks)
- (c) Design the circuit by determining the value of R_1 and output resistance R_0 for the current source as shown in Fig. 3(a). Assume that the transistors has the parameters, $\beta = 35$, $V_{BE1} = V_{BE2} = V_{BE3} = V_{BE}$ (on) = 0.7 V, $V_A = 85$ V, and $I_0 = I_{C2} = 15 \,\mu$ A. (6 marks)
- (d) Design the circuit to determine the (W/L) ratio for the MOSFET current source as shown in **Fig. 3(d)**. Assume that all MOSFET are identical and $I_{REF} = 1.2$ mA. The MOSFET has the parameters $k'_n = 125 \,\mu\text{A/V}^2$, $V_{TN} = 1.2$ V and $\lambda = 0$. (6 marks)

Fig. 3(d)

Question 4 [20 marks]

- (a) The feedback current i_{fb} and error current i_{ε} of a feedback amplifier are 0.5 mA and 85 μ A respectively. Determine the gain of the feedback amplifier. Assume that the open-loop gain of the amplifier is $2.5 \times 10^4 \Omega$. (5 marks)
- (b) The change of gain is 55% of a voltage amplifier without feedback. Design a feedback amplifier to determine the feedback factor β_v so that the change of gain would be reduced to 5%. Assume that the open-loop gain of the amplifier is 60 dB. (5 marks)
- (c) The bandwidth of a voltage amplifier is extended 175 times after feedback. Determine the input and output resistances R_{if} , R_{0f} and voltage gain A_{vf} after feedback. Assume that the input resistance, output resistance and voltage gain without feedback of the amplifier are, $R_i = 10 \text{ k}\Omega$, $R_0 = 5 \text{ k}\Omega$, $A_v = 1500$ respectively and bandwidth of the amplifier without feedback is 5 kHz. (5 marks)
- (d) Draw the schematic and design an Op-amp based phase-shift oscillator for generating frequency of 5.0 kHz.(5 marks)

END OF QUESTIONS